Disinfection by-products (DBPs) with significant teratogenic and carcinogenic properties have become a growing concern among the public. As an efficient and environmentally friendly technology, non-thermal plasma offers potential for removing emerging micro-pollutants. In this study, the degradation performance of bubbling corona discharge was evaluated on 24 halogenated alicyclic and aliphatic DBPs present in drinking water at concentrations ranging from ng/L to μg/L. The degradation of DBPs followed pseudo-first-order kinetics with rate constants (kobs) in the descending order of halonitromethanes (HNMs), halogenated benzoquinones (HBQs), haloacetonitriles, trihalomethanes (THMs), haloketones, halogenated aldehydes, and haloacetic acids (HAAs). THMs, HNMs, and HBQs were effectively removed within 5 min under a discharge power of 28 W. Degradation rates achieved by plasma treatment surpass those of other conventional treatment technologies. The required energy consumption was in the range of 5–30 kW·h/m3/order.Furthermore, the study investigated the effects of discharge power, initial concentration, and economic analysis on the degradation of four selected DBPs as representatives of mono-, di- and multi-carbon-containing DBPs, namely chloroform (TCM) and bromoform (TBM), tribromoacetic acid (TBAA), and 2,3,5,6-tetrachloro-1,4-benzoquinone (TetraC-BQ). Reactive radicals in the plasma system were investigated using electron paramagnetic resonance, optical emission spectroscopy, fluorimetry, and radical scavengers. Hydrated electrons and hydroxyl radicals played an important role in the removal of DBPs. The intermediates generated during the degradation of TCM, TBM, TBAA, and TetraC-BQ were identified, and the possible degradation pathways for mono- and binary C-DBPs and HBQs were deduced. The breakdown of HBQs did not produce secondary contamination with aliphatic DBPs. The carbon in DBPs was primarily converted to formic acid, acetic acid, and oxalic acid, and the halogens were mainly converted to halogen ions. Additionally, luminescent bacteria toxicity testing confirmed that plasma treatment could reduce the acute toxicity of water samples. These findings demonstrate the potential of plasma treatment as a post-treatment device at the household level.
Read full abstract