Chromium carbonitride coatings were deposited by cathodic arc physical vapor deposition technology at a temperature of 300 °C, as were used the reactive gasses CH4 and N2. The structural analysis of the CrN coating showed a polycrystalline structure with mixed CrN and Cr2N phases. All studied coatings, including the CrC exhibits fcc structure. The phases were confirmed by X-ray photoelectron spectroscopy measurements where a surface oxidation was also detected. The increase of the CH4 gas flow during the deposition process leads to a parabolic trend with the highest hardness of 33.5 GPa for the coating deposited at CH4 / N2 = 0.53. At the same time the lowest coefficient of friction for both counterparts Al2O3 and ZrO2 (0.28 and 0.26, respectively) were measured at CH4 / N2 = 1.86. The tribological tests reveal that the wear of the coatings increases with an increasing CH4 flow rate, whereas the coefficient of friction decreases. This observed contradiction is explained by a phenomenon described as the effect of Rebinder.