For any positive integer [Formula: see text], we clearly describe all finite-dimensional algebras [Formula: see text] such that the upper triangular matrix algebras [Formula: see text] are piecewise hereditary. Consequently, we describe all finite-dimensional algebras [Formula: see text] such that their derived categories of [Formula: see text]-complexes are triangulated equivalent to derived categories of hereditary abelian categories, and we describe the tensor algebras [Formula: see text] for which their singularity categories are triangulated orbit categories of the derived categories of hereditary abelian categories.
Read full abstract