Recent initiation of the first FDA-approved cardiac xenotransplantation suggests xenotransplantation could soon become a therapeutic option for patients unable to undergo allotransplantation. Until xenotransplantation is widely applied in clinical practice, consideration of benefit versus risk and approaches to management of clinical xenografts will based at least in part on observations made in experimental xenotransplantation in non-human primates. Indeed, the decision to proceed with clinical trials reflects significant progress in last few years in experimental solid organ and cellular xenotransplantation. Our laboratory at the NIH and now at University of Maryland contributed to this progress, with heterotopic cardiac xenografts surviving more than two years and life-supporting cardiac xenografts survival up to 9 months. Here we describe our contributions to the understanding of the mechanism of cardiac xenograft rejection and development of methods to overcome past hurdles, and finally we share our opinion on the remaining barriers to clinical translation. We also discuss how the first in human xenotransplants might be performed, recipients managed, and graft function monitored.