Following codepletion of endogenous serotonin (5-HT, >90%) and thyrotropin-releasing hormone (TRH, 66%) by neonatal treatment with the serotonergic neurotoxin, 5,7-dihydroxytryptamine (DHT), a 33% ( n = 12, P < 0.01) increase in specific TRH receptor binding was observed in adult rat spinal cord (SC) homogenates. A 20–21% increase in TRH receptors was also observed in the medulla/pons (MP) ( n = 12, P < 0.05) and midbrain (MB) ( n = 12, P < 0.02), but no changes were detected in 6 rostral brain regions. The depletion of 5-HT after DHT-treatment was also accompanied by a 34–42% increase in 5-HT 1 binding in the SC, MP and MB. Eadle-Hofstee analysis revealed that the changes in TRH receptor levels observed after DHT-lesions were due to an increase in receptor number rather than any significant changes in receptor affinity. Chronic treatment of adult rats with the 5-HT-depleting drugs, p-chlorophenylalanine (PCPA) and reserpine, produced a 90–97% decrease in 5-HT in the SC, MP and MB and elevated 5-HT 1 binding in any of these tissues. In conclusion, these results have provided further support for the coexistence of 5-HT and TRH in the MP and SC and revealed possible new areas of such colocalization in the MB. Furthermore, these data have demonstrated that only DHT-treatment, as apposed to PCPA or reserpine, can produce long-lasting codepletion of 5-HT and TRH with simultaneous compensatory up-regulation of their receptor systems in the SC and other caudal tissues.
Read full abstract