Microorganisms in the gut (the 'microbiome') and the metabolites they produce (the 'metabolome') regulate bone mass through interactions between parathyroid hormone (PTH), the immune system, and bone. This review summarizes these data and details how this physiology may relate to CKD-mediated bone disease. The actions of PTH on bone require microbial metabolite activation of immune cells. Butyrate is necessary for CD4+ T-cell differentiation, T-reg cell expansion and CD8+ T-cell secretion of the bone-forming factor Wnt10b ligand. By contrast, mice colonized with segmented filamentous bacteria exhibit an expansion of gut Th17 cells and continuous PTH infusion increases the migration of Th17 cells to the bone marrow, contributing to bone resorption. In the context of CKD, a modified diet, frequent antibiotic therapy, altered intestinal mobility, and exposure to multiple medications together contribute to dysbiosis; the implications for an altered microbiome and metabolome on the pathogenesis of renal osteodystrophy and its treatment have not been explored. As dysregulated interactions between PTH and bone ('skeletal resistance') characterize CKD, the time is ripe for detailed, mechanistic studies into the role that gut metabolites may play in the pathogenesis of CKD-mediated bone disease.
Read full abstract