Analysis of energy partitioning between defensive investments and growth in woody plants indicates that increasing a tree's life-span should require increased energy investment in protective measures such as thick bark and defensive chemicals. Increased investment in such defenses, however, logically must slow down the growth rate, thereby raising the mortality rate for juveniles in competition for height growth. Early reproduction should also reduce the growth rate. It is hypothesized that rapid growth can substitute for these defenses, but the consequence is rapid decline upon reaching maturity. These predictions are tested with data compiled from the literature for 159 species of North American trees. Data analysis supports predictions. Longevity of angiosperms, but not of gymnosperms was correlated with increased investment in defenses as measured by volumetric heat content of the wood. Wood density was not as good a measure. Longevity of gymnosperms was predicted by resistance to wood decay. For both taxa there was a negative correlation between growth rate and longevity, supporting the hypothesis of growth trade-offs. Age of sexual maturity was closely predicted by longevity in angiosperms. There was no such relationship for conifers as a whole, though there was for pines. The lack of relationship for all conifers might be explained by (i) variation in reproductive opportunities for young trees of different species, or (ii) variation in growth rates of young trees in certain adverse habitats occupied by conifers.