BackgroundPapillomaviruses (PVs) and polyomaviruses (PyVs) infect diverse vertebrates including human and cause a broad spectrum of outcomes from asymptomatic infection to severe disease. There has been no PV and only one PyV detected in tree shrews, though the genomic properties of tree shrews are highly similar to those of the primates.MethodsSwab and organ samples of tree shrews collected in the Yunnan Province of China, were tested by viral metagenomic analysis and random PCR to detect the presence of PVs and PyVs. By PCR amplification using specific primers, cloning, sequencing and assembling, genomes of two PVs and one PyV were identified in the samples.ResultsTwo novel PVs and a novel PyV, named tree shrew papillomavirus 1 and 2 (TbelPV1 and TbelPV2) and polyomavirus 1 (TbelPyV1) were characterized in the Chinese tree shrew (Tupaia belangeri chinensis). The genomes of TbelPV1, TbelPV2, and TbelPyV1 are 7410 bp, 7526 bp, and 4982 bp in size, respectively. The TbelPV1 genome contains 7 putative open-reading frames (ORFs) coding for viral proteins E1, E2, E4, E6, E7, L1, and L2; the TbelPV2 genome contains 6 ORFs coding for viral proteins E1, E2, E6, E7, L1, and L2; and the TbelPyV1 genome codes for the typical small and large T antigens of PyV, as well as the VP1, VP2, and VP3 capsid proteins. Genomic comparison and phylogenetic analysis indicated that TbelPV1 and TbelPV2 represented 2 novel PV genera of Papillomaviridae, and TbelPyV1 represented a new species of genus Alphapolyomavirus. Our epidemiologic study indicated that TbelPV1 and TbelPV2 were both detected in oral swabs, while TbelPyV1 was detected in oral swabs and spleens.ConclusionTwo novel PVs (TbelPV1 and TbelPV2) and a novel PyV (TbelPyV) were discovered in tree shrews and their genomes were characterized. TbelPV1, TbelPV2, and TbelPyV1 have the highest similarity to Human papillomavirus type 63, Ursus maritimus papillomavirus 1, and Human polyomavirus 9, respectively. TbelPV1 and TbelPV2 only showed oral tropism, while TbelPyV1 showed oral and spleen tropism.
Read full abstract