AbstractChanging global climate and wildfire regimes are threatening forest resilience (i.e., the ability to recover from disturbance). Yet distinguishing areas of “no” versus “slow” postfire forest recovery is challenging, and consequences of sparse tree regeneration for plant communities and carbon dynamics are uncertain. We studied previously forested areas where tree regeneration remained sparse 34 years after the large, stand‐replacing 1988 Yellowstone fires (Wyoming, USA) to ask the following questions: (1) What are the recovery pathways in areas of sparse and reduced forest recovery and how are they distributed across the landscape? (2) What explains variation in postfire tree regeneration density (total and by species) among sparse recovery pathways? (3) What are the implications of sparse recovery for understory plant communities? (4) How diminished are aboveground carbon stocks in areas of sparse postfire forest recovery? Tree densities and species‐specific age distributions, understory plant communities, and carbon stocks were sampled in 55 plots during summer 2022. We detected three qualitatively distinct sparse recovery pathways (persistent sparse or non‐forest, continuous tree infilling, and recent seedling and sapling establishment). Nearly half of the plots appeared “locked in” as persistently sparse or non‐forest, while the remaining may be on a slow path to forest recovery. Plots with nearby upwind seed sources as well as in situ seed pressure from young postfire trees appear likely to recover to forest. Where trees were sparse or absent, plant communities resembled those found in meadows, capturing compositional changes expected to become more common with continued forest loss. However, forest‐affinity species persisted in mesic locations, indicating mismatches between some plant communities and future forest change. Aboveground carbon stocks were low owing to minimal tree reestablishment. Almost all (96%) carbon was stored in coarse wood, a sharp departure from C storage patterns where forests are recovering. If not offset by future tree regeneration, decomposition of dead biomass will protract postfire aboveground carbon stock recovery. As global disturbance regimes and climate continue to change, determining the drivers of ecosystem reorganization and understanding how such changes will cascade to influence ecosystem structure and function will be increasingly important.
Read full abstract