Mantle cell lymphoma (MCL) is a rare, incurable, and aggressive B-cell non-Hodgkin lymphoma (NHL). Early MCL diagnosis and treatment is critical and puzzling due to inter/intra-tumoral heterogeneity and limited understanding of the underlying molecular mechanisms. We developed and applied a multifaceted analysis of selected publicly available transcriptomic data of well-defined MCL stages, integrating network-based methods for pathway enrichment analysis, co-expression module alignment, drug repurposing, and prediction of effective drug combinations. We demonstrate the "butterfly effect" emerging from a small set of initially differentially expressed genes, rapidly expanding into numerous deregulated cellular processes, signaling pathways, and core machineries as MCL becomes aggressive. We explore pathogenicity-related signaling circuits by detecting common co-expression modules in MCL stages, pointing out, among others, the role of VEGFA and SPARC proteins in MCL progression and recommend further study of precise drug combinations. Our findings highlight the benefit that can be leveraged by such an approach for better understanding pathobiology and identifying high-priority novel diagnostic and prognostic biomarkers, drug targets, and efficacious combination therapies against MCL that should be further validated for their clinical impact.