Swim bladder inflation (SBI) is a fundamental step in larval development for both physostome and physoclist fish species. Failure of the SBI triggers higher energy expenditures of the individual, which negatively affects swimming ability, growth rate, feeding efficiency, susceptibility to predation, and survival rate. In aquaculture, the SBI failure is caused by different factors including: (a) water contamination with oil increasing the surface water tension and preventing the larvae from gulping air bubbles for inflation, and (b) bacterial aerocystitis of the swim bladder caused by gulped organic debris. Hence, novel and effective water treatment technologies such as nanobubbles can be employed in aquaculture to reduce the risk of low SBI. In the present study, we compared conventional water treatment, i.e. surface spray combined with skimmers with air nanobubbles either alone or in combination, on the SBI of European perch larvae. In the control, no water treatment technology was employed. All treatments showed higher SBI efficiency compared to the control. The control group showed the lowest percentage of swim bladder-inflated individuals associated with low body weight (BW). The highest BW and SBI efficiency was recorded with the combination of surface skimmer, spray, and nanobubbles. The current study offers the first investigation of the nanobubbles' effect on SBI promotion in larvae of European perch and gives motivation for future optimizations.