The goal of this manuscript was to review the biological and clinical evidence that serotonin neurotransmission might play an important role in the physiology and treatment of vasovagal syncope. The authors reviewed PubMed and handsearches of secondary sources for papers related to the Bezold-Jarisch reflex and serotonin, the plausible involvement of the Bezold-Jarisch reflex in vasovagal syncope, and three lines of clinical evidence involving serotonin and the syncope. The Bezold-Jarisch reflex was first described following the infusion of veratrum alkaloids into animals in the 19th century. The reflex is triggered by serotonin stimulation chemoreceptors and mechanoreceptors in the the left ventricle. The afferent component of the reflex is carried by unmyelinated type C vagal nerve fibers, which results in parasympathetic efferent stimulation that causes bradycardia. The similarity of the combination of hypotension and bradycardia in the Bezold-Jarisch reflex and in vasovagal syncope led to the suggestion that the reflex was the cause of the syndrome. Three lines of evidence implicate the serotonin 5HT3 receptors in the heart in the reflex. There is genetic and physiologic evidence for the serotonin 5HT1A and 5HT3 receptors and the serotonin reuptake transporter (SERT). Acute blockade of SERT induces vasovagal syncope in humans undergoing head-up tilt table testing, and SERT inhibition reduces hypotension and bradycardia during spinal anaesthesia. Finally, three randomized clinical trials of SERT inhibitors uniformly reported that they significantly reduce the likelihood of vasovagal syncope recurrences. Multiple lines of evidence implicate serotonin neurotransmission in the cause of vasovagal syncope.
Read full abstract