BackgroundAcute pancreatitis (AP) is an inflammatory condition with potentially life-threatening complications. This study investigates the therapeutic potential of Clostridium butyricum for modulating the inflammatory cascade through the AMPK/NF-κB signaling pathway, focusing on inflammation induced by AP. LC-MS analysis of serum samples from AP patients highlighted the regulation of lipid metabolism and inflammation, and found that metabolites involved in the inhibition of NF-κB phosphorylation and the AMPK activation pathway were downregulated. We hypothesized that pre-administration of Clostridium butyricum and its culture supernatant could mitigate AP-induced damage by modulating the AMPK/NF-κB pathway.MethodsLipopolysaccharide (LPS)-induced cell inflammation models. LPS combined with CAE induced acute pancreatitis in mice. We divided mice into four groups: Con, AP, AP + C.Buty (AP with Clostridium butyricum treatment), and AP + CFS (AP with culture supernatant treatment). Analyses were performed using WB, RT-qPCR, Elisa, flow cytometry, IHC, and HE, respectively.ResultsOur study shows that CFS can reduce the apoptosis of LPS-induced cellular inflammation and reduce the release of LPS-induced cytoinflammatory factors through the AMPK/NF-κB pathway in vitro. In vivo, Clostridium butyricum and its supernatant significantly reduced inflammatory markers, and corrected histopathological alterations in AP mice. Gut microbiota analysis further supported these results, showing that Clostridium butyricum and its supernatant could restore the balance of intestinal flora disrupted by AP.ConclusionsMechanistically, our results indicated that the therapeutic effects of Clostridium butyricum are mediated through the activation of AMPK, leading to the inhibition of the NF-κB pathway, thereby reducing the production of pro-inflammatory cytokines. Clostridium butyricum and its culture supernatant exert a protective effect against AP-induced damage by modulating the AMPK/NF-κB signaling pathway. Future studies will further elucidate the molecular mechanisms underlying the beneficial effects of Clostridium butyricum in AP and explore its clinical applicability in human subjects.
Read full abstract