The covalent functionalization of the zeolitic imidazolate framework (ZIF) is rapidly progressing and is being exploited as a nanoplatform for antitumor drug delivery to improve tumor targeting and drug release. Here, a novel nanoplatform strategy was developed by encapsulating Carboplatin (CBP) in ZIF-90 nanospheres (NPs) to obtain CBP@ZIF-90 NPs and then, modifying folate-terminated methoxypoly(ethylene glycol) (FA-PEG-NH2) on the aldehyde group of ZIF-90 to form CBP@ZIF-90-NPF NPs with acid-sensitive Schiff base bond. The research results indicate that the yield of ZIF-90 was 72.77 ± 0.27 %, and the encapsulation efficiency and the loading content of CBP@ZIF-90 were 45.22 ± 0.49 % and 24.65 ± 0.34 %, respectively. The size of CBP@ZIF-90-NPF was 107.7 ± 1.7 nm in monodispersity with a single crystalline dodecahedral structure. Furthermore, the in vitro release behavior study revealed the sustained-release and the pH-responsive dissociation properties of the NPs. Only 6.84 % of CBP was released from the nanocarrier under physiological pH conditions for 48 h, while the release from the tumor microenvironment was 92.89 %. In addition, the cellular uptake result clearly showed that most of the FA-PEG-NH2 modified NPs exhibited specific selectivity in tumor cell nuclei. Finally, the cell counting kit-8 (CCK8) assay based on human ovarian cancer cell line (OVCAR-3) and human normal ovarian epithelial (IOSE-80) cell line obviously indicated that the ZIF-90 NPs had good biocompatibility and minimal cytotoxicity, as well as the high inhibition efficiency of the CBP@ZIF-90-NPF NPs meant that a much higher amount of CBP was transferred into the folate receptor (FR)-overexpressed ovarian cancer cells via FR mediated endocytosis. These results suggest that ZIF-90-NPF NPs could be an ideal targeted drug delivery vehicle for CBP, serving as a promising strategy for ovarian cancer treatment.
Read full abstract