Abstract
Background: Ovarian cancer presents a substantial risk to women's health and lives, with early detection and treatment proving challenging. Targeted nanodelivery systems are viewed as a promising approach to enhance the effectiveness of ovarian cancer treatment and ultrasonic imaging outcomes. Objective: A phase-shifted nanodelivery system (NPs) loaded with paclitaxel (PTX) and further conjugated with avidin (Ab) was studied, with the goal of investigating the effects of targeted nanodelivery strategies on the in vitro therapeutic efficacy and ultrasonic imaging of ovarian cancer. This study provides a foundation for future in vivo treatments utilizing this approach. Methods: PTX-NPs were prepared using the single water-in-oil (O/W) emulsion solvent evaporation method, with avidin coupling achieved through biotin-avidin affinity. The encapsulation efficiency and release profile of PTX were analyzed using UV spectrophotometry. The phase-shift properties of the Ab-PTX-NPs delivery system were evaluated, and the targeting efficiency, cytotoxicity against SKOV3 cells, and in vivo biosafety of various nanodelivery systems were assessed. Results: The prepared nanodelivery system showed a stable and uniform structure with a good particle size distribution and exhibited favorable release characteristics under ultrasound exposure. In vitro experiments revealed that the nanodelivery system displayed excellent targeting and cytotoxic effects against SKOV3 cells, indicating the potential of the Ab-PTX-NPs delivery system for targeted ovarian cancer therapy. In vivo safety studies demonstrated the high biosafety of the prepared nanodelivery system. Conclusion: A novel nanodelivery system was developed, and the experimental results obtained provide a solid experimental basis for further research on in vivo ultrasound molecular imaging technology, offering new insights into targeted ultrasound molecular imaging and the treatment of ovarian cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.