Nasopharyngeal carcinoma (NPC) is a malignant tumor that occurs in the nasopharynx. Palate, lung, and nasal epithelium clone (PLUNC) has been identified as an early secreted protein that is specifically expressed in the nasopharynx. The aim of this study was to determine the role and mechanism of PLUNC in NPC. We used mRNA sequencing (seq) combined with ribosome-nascent chain complex (RNC)-seq to determine the biological role of PLUNC. The expression of epithelial-to-mesenchymal transition (EMT)-related molecules was detected by western blotting. Then, cell migration and invasion were detected by wound healing and Transwell chamber assays. NPC cells were injected into the tail vein of nude mice to explore the biological role of PLUNC in vivo. The sequencing results showed that PLUNC inhibited the progression of NPC and its expression was correlated with that of NOD-like receptors. Experiments confirmed that PLUNC inhibited the invasion and metastasis of NPC cells by promoting the ubiquitination degradation of NLRP3. PLUNC overexpression in combination with the treatment by MCC950, an inhibitor of NLRP3 inflammasome activation, was most effective in inhibiting NPC invasion and metastasis. In vivo experiments also confirmed that the combination of PLUNC overexpression and MCC950 treatment effectively inhibited the lung metastasis of NPC cells. In summary, our research suggested that PLUNC inhibited the invasion and metastasis of NPC by inhibiting NLRP3 inflammasome activation, and targeting the PLUNC-NLRP3 inflammasome axis could provide a new strategy for the diagnosis and treatment of NPC patients.
Read full abstract