The low-strength domestic wastewater (LSDW) treatment with low chemical oxygen demand (COD) has drawn extensive attention for the poor total nitrogen (TN) removal performance. In the present study, an enhanced multistage anoxic/oxic (A/O) biofilm reactor was designed to improve the TN removal performance of the LSDW treatment. Efficient nitrifying and denitrifying biofilm carriers were cultivated and then filled into the enhanced biofilm reactor as the sole microbial source. Step-feed strategy and internal recycle were adopted to optimize the substrate distribution and the organics utilization. Key operational parameters were optimized to obtain the best nitrogen and organics removal efficiencies. A hydraulic retention time of 8h, an influent distribution ratio of 2:1 and an internal recycle ratio of 200% were tested as the optimum parameters. The ammonium, TN and COD removal efficiencies under the optimal operational parameters separately achieved 99.75 ± 0.21, 59.51 ± 1.95 and 85.06 ± 0.79% with an organic loading rate at around 0.36kg COD/m3d. The high-throughput sequencing technology confirmed that nitrifying and denitrifying biofilm could maintain functional bacteria in the system during long-period operation. Proteobacteria and Bacteroidetes were the dominant phyla in all the nitrifying and denitrifying biofilm samples. Nitrosomonadaceae_uncultured and Nitrospira sp. stably existed in nitrifying biofilm as the main nitrifiers, while several heterotrophic genera, such as Thauera sp. and Flavobacterium sp., acted as potential genera responsible for TN removal in denitrifying biofilm. These findings suggested that the enhanced biofilm reactor could be a promising route for the treatment of LSDW with a low COD level.