Heavy metals are considered hazardous elements because they are not biodegradable in the environment. Exposure to heavy metals leads to serious problems that affect human health and the aquatic environment. Removal of heavy metal ions from simulated water was employed for chitosan/iron nanocomposites (C-Fe2O3NPs). C-Fe2O3 was prepared from chitosan solution and iron salt. The characterization of C-Fe2O3 was carried out using scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR), X-ray fluorescence (XRF), and X-ray diffractometry (XRD). To determine the morphological structure, functional groups, and physicochemical properties. Determination of the optimum operating experimental conditions that result in the highest efficiency for heavy metal ions was investigated, such as contact duration (0–60 min), concentration (0.5, 1, 2, 3, and 5 mg/L), and adsorbent dose (0.1–0.5 g/L). Subsequently, the application of modified C-Fe2O3 in batch system for the elimination of Cu, Cr, Pb, Zn, and Se from simulated water was carried out. The results showed that EDX displayed the existence of iron, indicating the presence of iron nanoparticles. Also, the XRD and XRF showed the presence of iron oxide in the crystalline phase. The optimal conditions of the breakthrough curve, such as column height, flow rate, and contact time, were also examined. The results showed that the optimal conditions in the column system were a height of 10 cm, a flow rate of 5 mL/min, and a concentration of 3 mg/L. The kinetic information obtained was best modeled with the pseudo second-order model, and the experimental results fit the Langmuir model. High removal rates for Cu, Cr, Zn, Se, and Pb reached 99.8%, 93.8%, 98.8%, 99.8%, and 97.8%, respectively were achieved. The regeneration study indicated the good shelf life of iron magnetic NPs, which was 4.2%. In conclusion, C-Fe2O3 NPs are a potential adsorbent for heavy metal decontamination from water.