Abstract

Multiple porous carbon materials have great promise and potential in the capacitive deionization (CDI) field. Specific surface area (SSA), pore size distribution, and preparation method of CDI electrode materials are essential for the treatment of heavy metal ions. In this work, PPy composited porous carbon electrodes (hypercrosslinked polymers/polypyrrole, HCPs/PPy) were obtained by one-step crosslinked carbonization preparation and electro-deposition. The diverse pore structure gives the composite electrode a large SSA and excellent adsorption performance. HCPs/PPy-4 gives a high SSA of 251.26 m2/g. In the CDI process, the adsorption capacity of HCPs/PPy-4 for Fe3+, Cu2+, Pb2+, and Ag+ is 20.69 mg/g, 37.81 mg/g, 26.86 mg/g, and 40.95 mg/g. The negative electrode recoveries for the adsorption of the four ions were reached 81.2%, 89.2%, 85.5%, and 100%, respectively. It indicates that HCPs/PPy is a novel and potentially porous carbon electrode for high-performance CDI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.