Clioquinol (5-chloro-7-iodo-8-hydroxyquinoline) is an antimicrobial agent whose actions as a zinc or copper ionophore and an iron chelator revived the interest in similar compounds for the treatment of fungal and bacterial infections, neurodegeneration and cancer. Recently, we reported zinc ionophores, including clioquinol, cause vasorelaxation in isolated arteries through mechanisms that involve sensory nerves, endothelium and vascular smooth muscle. Here, we report that clioquinol also uniquely acts as a competitive alpha-1 (α1) adrenoceptor antagonist. We employed ex vivo functional vascular contraction and pharmacological techniques in rat isolated mesenteric arteries, receptor binding assays using stabilized solubilized α1 receptor variants, or wild-type human α1-adrenoceptors transfected in COS-7 cells (African green monkey kidney fibroblast-like cells), and molecular dynamics homology modelling based on the recently published α1A adrenoceptor cryo-EM and α1B crystal structures. At higher concentrations, all ionophores including clioquinol cause a non-competitive antagonism of agonist-mediated contraction due to intracellular zinc delivery, as reported previously. However, at lower concentration ranges, clioquinol has an additional mechanism of competitively inhibiting α1-adrenoceptors that contributes to decreasing vascular contractility. Molecular dynamic simulation showed that clioquinol binds stably to the orthosteric binding site (Asp106) of the receptor, confirming the structural basis for competitive α1-adrenoceptor antagonism by clioquinol.