Flow-excited resonances of acoustic trapped modes in ducted shallow cavities are reviewed in this paper. The main components of the feedback mechanism which sustains the acoustic resonance are discussed with particular emphasis on the complexity of the trapped mode shapes and the strong three-dimensionality of the cavity flow oscillations during the resonance. Due to these complexities of the flow and sound fields, it is still difficult to theoretically or numerically model the interaction mechanism which sustains the acoustic resonance. Strouhal number and resonance amplitude charts are therefore included to help designers avoid the occurrence of resonance in new installations, and effective countermeasures are provided which can be implemented to suppress trapped mode resonances in operating plants.