The transversity generalized parton distributions (tGPDs) of the the pion, involving matrix elements of the tensor bilocal quark current, are analyzed in chiral quark models. We apply the nonlocal chiral models involving a momentum-dependent quark mass, as well as the local Nambu--Jona-Lasinio with the Pauli-Villars regularization to calculate the pion tGPDs, as well as related quantities following from restrained kinematics, evaluation of moments, or taking the Fourier-Bessel transforms to the impact-parameter space. The obtained distributions satisfy the formal requirements, such as proper support and polynomiality, following from Lorentz covariance. We carry out the leading-order QCD evolution from the low quark-model scale to higher lattice scales, applying the method of Kivel and Mankiewicz. We evaluate several lowest-order generalized transversity form factors, accessible from the recent lattice QCD calculations. These form factors, after evolution, agree properly with the lattice data, in support of the fact that the spontaneously broken chiral symmetry is the key element also in the evaluation of the transversity observables.
Read full abstract