In this paper, a polarization-insensitive, metamaterial absorber with more than 91 % absorptivity is investigated numerically and experimentally for radar cross-section reduction at X, Ku, and K bands. The unit cell structure of the absorber is comprised of a symmetrically arranged defective L-shaped patch made of copper metal, which is imprinted on a metal-backed FR-4 lossy dielectric substrate. The proposed absorber yields multiband absorption response at distinct absorption peaks at 11.1, 15.5, and 16.3 GHz along with the broadband response of 4.8 GHz from 18.6 to 23.4 GHz (absorption peaks at 18.9, 20, 21.9, and 23 GHz) in the absorption spectra. The Characteristic mode analysis has been carried out and presented to verify the modes and resonance in the structure. The physical absorption phenomenon is clarified by presenting the induced electric field, top and bottom surface current distribution, and various retrieved constitutive electromagnetic parameters. The structure is studied for various polarization angles for both transverse electric (TE) and transverse magnetic (TM) waves at normal incidence which shows strict insensitivity to the direction of arrival of electromagnetic(EM) signal. The structure is also investigated under oblique incidence for both TE and TM waves where the response holds good up to 50° incident angles in both cases. The novelty of the proposed absorber lies in its multiband response at X, Ku, and K bands through a unique metallic pattern on a thin FR-4 substrate along with characteristics of broadband, polarization insensitiveness, wide incidence angle independence, and compactness incorporated in a single and simple design without using external components. A prototype of the absorber has been fabricated and simulated results are validated with measured results. All the above-mentioned attributes in a simple design make it commercially suitable for radar cross-section (RCS) reduction and energy harvesting applications at X, Ku, and K bands.