To thoroughly investigate the impact of meteorological conditions and emission changes on winter PM2.5 variation in the Yangtze River Delta (YRD) from 2015 to 2019, we leveraged advanced modeling techniques, namely, the Weather Research and Forecasting (WRF) model and the Nested Air Quality Prediction Model System (NAQPMS). The results revealed that a notable trend of high-PM2.5-concentration regions shifted from coastal areas towards to the inland regions. While emission reduction can effectively reduce the concentration of PM2.5, meteorological changes exert a significant impact on PM2.5 concentration. Unfavorable meteorological changes in 2018 and 2019 emerged as crucial factors driving PM2.5 pollution in the region (up 0~50 µg·m−3). Our findings also shed light on the potential sources and transport pathways of PM2.5 pollution in key cities within the YRD, indicating that the coastal channel of Hebei–Shandong–Jiangsu and the inland channel bordering Hebei, Henan, Shandong, and Anhui serve as major contributors. Light and moderate pollution was predominantly influenced by the medium-distance coastal channel (48~70%). Remarkably, short-distance inland (19~54%) and coastal transportation (33~53%) channels emerged as the primary causes of severe PM2.5 pollution in the YRD. To effectively combat this issue, it is imperative to bolster key control and prevention measures in these regions.
Read full abstract