Mono-, di-, tri-, and tetra-chlorinated polychlorinated biphenyls (PCBs) are congeners with greater volatility which remain in air, soils and sediments requiring treatment. In this study, the fate of these PCBs was investigated within whole poplar plants ( Populus deltoides x nigra, DN34) with application for a treatment system such as a confined disposal facility for dredged material. Whole hybrid poplars were exposed hydroponically to a mixture of five congeners, common in the environment, having one to four chlorine atoms per molecule. Results indicated that PCB 3, 15, 28, 52, and 77 were initially sorbed to the root systems. The root concentration factor (RCF) of PCBs during the exposure was calculated and correlated with K ow. PCB congeners were taken up by the roots of hybrid poplar, and the translocation of PCBs to stems was inversely related to congener hydrophobicity (log K ow). PCB 3 and 15 were translocated to the upper stem at small but significant rates. PCB 28 was translocated to the wood of the main stem but no farther; translocation from the roots was not detected for PCB 52 and 77. The distribution of PCBs within poplars was determined, and mass balances were completed to within 15% for each chemical except for PCB 3, the most volatile congener. This is the first report on the transport of PCBs through whole plants designed for use in treatment at disposal facilities.