This study describes the assessment of air quality in Albania using moss biomonitoring. The moss species, Hypnum cupressiforme (Hedw) sps., was used in this study. Mosses were collected during August and September 2015 at 55 sampling sites more or less homogeneously distributed over the entire territory of the country. The spatial distribution and temporal trends of trace metal atmospheric deposition were studied through the determination of twenty inorganic elements, Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Na, Ni, Pb, Sr, V, and Zn. ICP-AES, AAS (As and Cd) and CV AAS (Hg) analysis were used to determine the concentration of the elements. The obtained data show significant differences in the spatial distribution of the elements derived from different emission sources. High emission loads of anthropogenic elements (Cr, Ni, Cu, As and Zn) were detected in the East, and of sea salt elements, particularly Na and K, in the Western coastal line. The distribution trend of the trace metals was studied by comparing the current data with the data of a similar study performed in 2010. Due to the differences in airborne metal concentrations, their scavenging ratios from the atmosphere to the terrestrial ecosystems, and their different uptake-leaching rates during wet and dry deposition respectively of 2015 and 2010 moss grown period, different concentration levels were found in 2010 and 2015 moss metal concentrations. The 2015 moss concentration levels of anthropogenic elements Cr, Ni, Cu, As, Zn and Na had increased, while K, Mg and Hg moss concentration data had declined. Other elements show non significant differences in mosses of both monitoring periods.The contamination levels that were evaluated by calculating the contamination factor (CF) for each element provided similar results for the 2015 and 2010 moss survey. Factor analysis (FA) was applied to identify the possible sources of elements in the 2015 moss samples. Five dominant factors were identified representing long-range and local atmospheric transport of wind-blown soil dust particles (F1); local emission from chromium industry and wind-blown mineral dust particles (F2); anthropogenic sources of traffic emission and wind-blown fine mineral dust particles derived from geogenic origin natural transport from the marine environment (F4); and long-range atmospheric deposition (F5). This study emphasis that moss biomonitoring combined with data analysis and inventory of emission sources are important tools to assess air quality in Albania.
Read full abstract