Geophysical materials such as sea ice, rocks, soils, snow, and glacial ice are composite media with complex, random microstructures. The effective fluid, gas, thermal, and electromagnetic transport properties of these materials play an important role in the large-scale dynamics and behavior of many geophysical systems. A striking feature of such media is that subtle changes in microstructural characteristics can induce changes over many orders of magnitude in the transport properties of the materials, which in turn can have significant large-scale geophysical effects. For example, sea ice, which mediates energy transfer between the ocean and atmosphere, plays a key role in global climate, and serves as an indicator of climatic change, is a porous composite of ice, brine and gases. Relevant length scales range from microns and millimeters for individual brine structures, to centimeters and meters for connected brine channels across floes, to hundreds of kilometers across an ice pack. Sea ice is distinguished from many other porous composites, such as sandstones or bone, in that its microstructure and bulk material properties can vary dramatically over a relatively small temperature range. The fluid permeability of sea ice ranges over six orders of magnitude for temperatures between 0°C and −25°C. Moreover, small changes in brine volume fraction around a threshold value of about 5%, corresponding to variations in temperature around a critical point of about −5°C, control an important transition between low and high fluid permeability regimes. Below this critical temperature, the sea ice is effectively impermeable, while for higher temperatures the brine phase becomes connected over macroscopic scales, allowing fluid transport through the ice. This transition has been observed to impact a wide range of phenomena such as surface flooding and snow–ice formation, enhancement of heat transfer due to fluid motion, mixing in the upper ocean, melt pool persistence, surface albedo (ratio of reflected to incident radiation) and other optical properties, growth and nutrient replenishment of algal and bacterial communities living in sea ice, and remote sensing of the sea ice pack from space. Recently, we have shown how continuum percolation theory can be used to understand the critical behavior of fluid transport in sea ice. Here we review this application of percolation theory to sea ice, and briefly discuss electromagnetic transport in sea ice, in particular how the geometry and connectivity of the brine microstructure determine its effective complex permittivity.