Nowadays, great effort has been devoted to fabricate flexible wearable sensor with high stretchability, moderate modulus, favorable durability, excellent transparency, and satisfactory sensitivity. In this work, we report the preparation of a hybrid double-network (DN) hydrogel by a simple one-pot method. First, chitosan was added into an AlCl3 solution to form Al3+-chitosan complex (CS-Al3+). Second, the hybrid CS/Al3+-poly(acrylamide) (PAM) DN hydrogels were constructed via in situ polymerization of acrylamide (AM) in present of Al3+-chitosan complex. Thanks to the existence of electrically conductive CS-Al3+ networks, the resulting hybrid DN hydrogel exhibits excellent stretchability, fatigue resistance, transparency, and conductivity. Furthermore, the CS/Al3+-PAM DN hydrogel could be used as strain sensor, and demonstrates many desired virtues, including satisfactory sensitivity (gauge factors of 1.7–12.1), wide detection range (up to 1500%), low limit of discernment (1% strain), high reliability, and excellent durability (1000 cycles). More significantly, the manufactured hydrogel-based strain sensor can be employed as wearable devices to precisely detect various human movements.
Read full abstract