Transparent oxyfluoride glass–ceramics containing BaYF5 nanocrystals were successfully synthesized by appropriate heat-treatment on the SiO2–Al2O3–Na2O–BaF2–Y2O3–Pr6O11 precursor glass. The structure and luminescence properties of the precursor glass and glass–ceramics were investigated by DSC, XRD, TEM, optical transmission, photoluminescence, decay time and radioluminescence spectra. The XRD results indicate that the BaYF5 nanocrystals can percitated in the precursor glass and the sharper emission peaks of Pr3+ in glass ceramic suggests that Pr3+ ions are incorporated into the BaYF5 nanocrystals. The higher the heat-treatment temperature is, the more the Pr3+ ions are centered into BaYF5 nanocrystals, which results in the optimal concentration of Pr3+ in glass ceramic changes on heat-treatment temperature. It is notable that the emission intensity of both photoluminescence and radioluminescence for 0.1mol% Pr3+ in the glass ceramic (GC665) are stronger than those in the precursor glass. The mechanism of enhanced luminescence is also discussed.