Transparent Interpenetrating Polymer Networks (IPNs) with poly(methyl methacrylate) (PMMA) as the stiff phase and polyurethane (PU) as the ductile phase with varying PMMA:PU ratios in the range of 90:10 to 70:30 were formulated. Static tensile and fracture tests indicate significant failure strain and crack initiation toughness enhancements with a loss of stiffness relative to PMMA. Dynamic fracture tests were conducted using a long-bar impact loading apparatus in conjunction with an optical method and high-speed photography. Low-velocity impact tests were also performed using a drop-tower. Dynamic fracture and low-velocity impact responses show that an optimum range of PMMA:PU ratios in the IPNs can produce enhanced fracture toughness and impact energy absorption capability when compared to PMMA. Fractographic examination supports macro-measurements by showing a distinct change in surface morphology associated with improved macroscale fracture toughness.
Read full abstract