Background and aims of the study A functionally single ventricle (FSV) refers to a group of congenital heart defects that are not amenable for biventricular correction. The Fontan operation is utilized as surgical treatment for most of FSV patients. The evaluation of FSV function is extremely difficult due to its unique pathophysiology. This study aimed to explore the efficacy of speckle tracking echocardiography (STE) parameters measured at rest and during exercise for comprehensive assessment of univentricular heart. MethodsWe enrolled 37 patients with a functionally single ventricle after the Fontan operation, hospitalized in the Department of Congenital Heart Defects between years 2019 and 2021.The echocardiographic stress tests were performed in the Echocardiography Laboratory of the Congenital Heart Defects Department. The study was conducted on a bicycle ergometer in a semi-recumbent position. The parameters obtained by speckle tracking echocardiography (STE): the longitudinal strain of the FSV free wall (Ɛ) and the longitudinal strain of myocardial layers: subendocardial, medial and subepicardial were analyzed. A transmural longitudinal strain gradient (TG) was calculated as the difference between longitudinal deformation of the subendocardial and subepicardial layers. Current results of cardiac magnetic resonance imaging (CMR) and cardio-pulmonary test (CPET) were also incorporated. Demographic data, past interventions, pharmacological treatment and comorbidities were extracted from medical records. ResultsƐ at rest and during exercise were not related to the parameters of physical capacity obtained on CPET nor to the CMR results. The transmural strain gradient was dependent on physical performance parameter- peak oxygen uptake- and related to the FSV ejection fraction calculated by magnetic resonance imaging. ConclusionsThe transmural strain gradient and FSV free wall strain are readily measurable and suitable for evaluating single ventricle function. The TG is positively correlated with peak oxygen uptake during the cardiopulmonary test and with the ejection fraction derived from cardiac magnetic resonance imaging. The applicability of these findings in patients undergoing the Fontan procedure warrants further exploration.