The advent of the Internet of Things (IoT) has revolutionized connectivity by interconnecting a vast array of devices, underscoring the critical need for robust data security, particularly at the Physical Layer Security (PLS). Ensuring data confidentiality and integrity during wireless communications poses a primary challenge in IoT environments. Additionally, within the constrained frequency bands available, Cognitive Radio Networks (CRNs) has emerged as an urgent necessity to optimize spectrum utilization. This technology enables intelligent management of radio frequencies, enhancing network efficiency and adaptability to dynamic environmental changes. In this research, we focus on examining the PLS for the primary channel within the underlying CRNs. Our proposed model involves a primary source-destination pair and a secondary transmitter-receiver pair sharing the same frequency band simultaneously. In the presence of a common eavesdropper, the primary concern lies in securing the primary link communication. The secondary user (SU) acts as cooperative jamming, strategically allocating a portion of its transmission power to transmit artificial interference, thus confusing the eavesdropper and protecting the primary user's (PU) communication. The transmit power of the SU is regulated by the maximum interference power tolerated by the primary network's receiver. To evaluate the effectiveness of our proposed protocol, we develop closed-form mathematical expressions for intercept probability ( P int ) and outage probability (OP) along the primary communication link. Additionally, we derive mathematical expressions for OP along the secondary communications network. Furthermore, we investigate the impact of transmit power allocation on intercept and outage probabilities across various links. Through both simulation and theoretical analysis, our protocol aims to enhance protection and outage efficiency for the primary link while ensuring appropriate secondary OP, thereby contributing to advancements in IoT security and spectrum management.