This paper proposes a novel differential chaos shift keying (DCSK) system that utilizes carrier phase modulation in combination with time slot and code index modulation, referred to as CP-TCIM-DCSK system, to achieve high data rate transmission. In the proposed CP-TCIM-DCSK system, the carrier modulated by the carrier phase is used to transmit the information-bearing signal. In addition to physically transmitted information bits, extra information bits are conveyed through time slot and Walsh code modulation, as well as carrier phase modulation, making full use of the benefits of multidimensional modulation. To successfully estimate carrier phase bits and code index bits, an effective joint detection algorithm for carrier phase and code index tailored for the CP-TCIM-DCSK system is introduced. The theoretical Bit Error Rate (BER) expressions for the CP-TCIM-DCSK scheme are derived for both Additive White Gaussian Noise (AWGN) and multipath Rayleigh fading channels. Furthermore, a comparison of data rates, energy efficiency, and complexity between the CP-TCIM-DCSK system and the most advanced systems in the same category at present is conducted. The results validate the accuracy of theoretical analysis through simulation and demonstrate that the proposed scheme outperforms its competitive systems in terms of BER performance.
Read full abstract