PurposeAs renewable energy sources (RES) experience short-term variability, electricity greenhouse gas (GHG) emissions also fluctuate. Increasing temporal resolution in electricity emissions accounting allows capturing these fluctuations. However, existing time-resolved models either neglect indirect impacts, adopt a generation perspective, or are based on non-public country-specific data. We provide an approach for calculating time-resolved GHG emission factors (EFs) of electricity consumption based on open access data for European countries and examine the temporal variability of German EFs.MethodsTime-resolved electricity GHG EFs are calculated within the framework of attributional life cycle assessment (LCA) with up to quarter-hourly resolution. The approach involves top-down calculation of annual combustion emissions, validation and scaling of time-resolved electricity generation data, as well as calculation of inland consumption EFs for each interval throughout a year. The EFs are divided by the stages of net generation, consumption by hydro-pumped storage (HPS), and transmission and distribution (T&D) losses, as well as Scopes 2 and 3, enabling GHG Protocol Corporate Standard-compliant reporting. The approach is exemplarily applied to Germany and its transmission system operator zones at quarter-hourly resolution for the years from 2017 to 2020 to investigate the relation between grid mix composition and temporal variability of EFs.Results and discussionThe annual average EF of the German consumption mix, encompassing direct and upstream emissions, declined from 499 (2017) to 377 g CO2e/kWh (2020), while quarter-hourly variability increased by 12%. Neglecting upstream emissions and intermediate steps between generation and consumption in Germany in 2020 resulted in an underestimation of 13% on an annual level, while quarter-hourly Scope 3 EFs reached up to 100 g CO2e/kWh. On a sub-national level, annual average EFs varied between 157 g CO2e/kWh (TenneT zone) and 505 g CO2e/kWh (50Hertz zone) in 2020. Temporal variability is the greatest in electricity systems with both fossil-fuel and renewable capacity sufficient to dominate short-term electricity generation. At an advanced level of RES integration, the fluctuations of EFs start declining, as demonstrated by the TenneT case.ConclusionAn increased temporal resolution in electricity emissions accounting can enhance a posteriori LCA results’ accuracy during the energy transition phase. The provided EFs link the life cycle-based perspective with time-resolved emissions accounting. With increasing reliance on RES, indirect emissions, including those related to energy storage, will gain in significance. The next step should focus on integrating physical cross-border electricity exchanges to complete the consumption perspective, as well as examining practical implementation to other countries.
Read full abstract