Abstract The outstanding properties of transition metal dichalcogenide (TMD) monolayers and their van der Waals (vdW) heterostructures, arising from their structure and the modified electron-hole Coulomb interaction in two-dimension, make them promising candidates for potential electro-optical devices. However, the production of reproducible devices remains challenging, partly due to variability at the nanometer to atomic scales. Thus, access to chemical, structural, and optical characterization at these lengthscales is essential. While electron microscopy and spectroscopy can provide chemical and structural data, accessing the optical response at the nanoscale through electron spectroscopies has been hindered until recently. This review focuses on the application of two electron spectroscopies in scanning (transmission) electron microscopes, namely cathodoluminescence and electron energy-loss spectroscopy, to study the nano-optics of TMD atomic layers and their vdW heterostructures. How technological advancements that can improve these spectroscopies, many of which are already underway, will make them ideal for studying the physics of vdW heterostructures at the nanoscale will also be discussed.
Read full abstract