The aim of the present study was to obtain an oil/water (O/W) nanoemulsion (NE) containing garden savory (Satureja hortensis) essential oil (EO) and evaluating its herbicidal activity against Amaranthus retroflexus and Chenopodium album. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) were employed to determine the chemical composition of the EO. Carvacrol (55.6%) and γ-terpinene (31.9%) were the major EO components. Low energy method was applied, allowing achievement of EO nanodroplets. The NE also presented low polydispersity, and the mean droplet was below 130nm even after storage for 30d. Laboratory tests showed that the NE at different concentrations (100, 200, 400, 800, and 1000μL.L−1) significantly (P≤0.05) reduced the germination indices and the seedling's growth in dose-response. The inhibitory effect was the greatest at 800μL.L−1 NE. Overall, root length was more inhibited as compared to shoot length. Post-emergence application of NE at different concentrations (1000, 2000, 3000, 4000 and 5000μL.L−1 of EO) on 2–4 true leaves' stage of the weeds caused significant (P≤0.05) decrease in the growth factors in dose-dependent manner. Complete lethality was observed by 4000μL.L−1 NE sprayed on the weeds. Spraying of NE significantly (P≤0.05) reduced chlorophyll content in the tested weeds. Increasing in relative electrolyte leakage (REL) 1 and 5d after treatment represented significant cell membrane disruption and increased cell membrane permeability. Transmission electron microscope (TEM) pictures confirmed NE droplet size and demonstrated membrane destruction. The study approved that the NE of S. hortensis EO has herbicidal properties as it has high phytotoxic effect, and interferes with the germination, growth and physiological processes of the weeds. The production of NE from S. hortensis EO is a low energy method that offers a promising practical natural herbicide for weed control in organic agricultural systems.
Read full abstract