The lyoprotective effects of mannitol and lactose have been evaluated in the production of sildenafil citrate liposomes. Liposomes were prepared by mixing the components under ultrasonic agitation, followed by a transmembrane pH gradient for remote drug loading. Mannitol and lactose, as compared to sucrose and trehalose, were used as the stabilizing agents, and different freeze-drying cycles were assayed. The remaining moisture and the thermal characteristics of the lyophilized samples were analyzed. Size, entrapment efficiency, biocompatibility, and cell internalization of original and rehydrated liposomes were compared. The type of additive did not affect the biocompatibility or cell internalization, but did influence other liposome attributes, including the thermal characteristics and the remaining moisture of the lyophilized samples. A cut-off of 5% (w/w) remaining moisture was an indicator of primary drying completion—information useful for scaling up and transfer from laboratory to large-scale production. Lactose increased the glass transition temperature to over 70 °C, producing lyoprotective effects similar to those obtained with sucrose. Based on these results, formulations containing liposomes lyophilized with lactose meet the FDA’s requirements and can be used as a biocompatible and biodegradable vehicle for the pulmonary delivery of therapeutic doses of sildenafil citrate.
Read full abstract