PurposeThis study aims to evolve an enhanced butterfly optimization algorithm (BOA) with respect to convergence and accuracy performance for numerous benchmark functions, rigorous constrained engineering design problems and an inverse synthetic aperture radar (ISAR) image motion compensation.Design/methodology/approachAdaptive BOA (ABOA) is thus developed by incorporating spatial dispersal strategy to the global search and inserting the fittest solution to the local search, and hence its exploration and exploitation abilities are improved.FindingsThe accuracy and convergence performance of ABOA are well verified via exhaustive comparisons with BOA and its existing variants such as improved BOA (IBOA), modified BOA (MBOA) and BOA with Levy flight (BOAL) in terms of various precise metrics through 15 classical and 12 conference on evolutionary computation (CEC)-2017 benchmark functions. ABOA has outstanding accuracy and stability performance better than BOA, IBOA, MBOA and BOAL for most of the benchmarks. The design optimization performance of ABOA is also evaluated for three constrained engineering problems such as welded beam design, spring design and gear train design and the results are compared with those of BOA, MBOA and BOA with chaos. ABOA, therefore, optimizes engineering designs with the most optimal variables. Furthermore, a validation is performed through translational motion compensation (TMC) of the ISAR image for an aircraft, which includes blurriness. In TMC, the motion parameters such as velocity and acceleration of target are optimally predicted by the optimization algorithms. The TMC results are elaborately compared with BOA, IBOA, MBOA and BOAL between each other in view of images, motion parameter and numerical image measuring metrics.Originality/valueThe outperforming results reflect the optimization and design successes of ABOA which is enhanced by establishing better global and local search abilities over BOA and its existing variants.
Read full abstract