We extend the statistical analysis of Lissauer et al. (2012, ApJ 750, 112), which demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) represent true transiting planets, and develop therefrom a procedure to validate large numbers of planet candidates in multis as bona fide exoplanets. We show that this statistical framework correctly estimates the abundance of false positives already identified around Kepler targets with multiple sets of transit-like signatures based on their abundance around targets with single sets of transit-like signatures. We estimate the number of multis that represent split systems of one or more planets orbiting each component of a binary star system. We use the high reliability rate for multis to validate more than one dozen particularly interesting multi-planet systems are validated in a companion paper by Rowe et al. (2014, ApJ, this issue). We note that few very short period (P < 1.6 days) planets orbit within multiple transiting planet systems and discuss possible reasons for their absence. There also appears to be a shortage of planets with periods exceeding a few months in multis.