As an element relevant to human health, iodine is highly worthy of researchers' attention, especially the mechanism of iodine migration and enrichment in groundwater systems. A total of 43 groundwater, 1 seawater, 107 sediment, and 111 pore water samples from two boreholes (toward to Bohai Sea: BT, HH) were collected along a groundwater flow path at the North China Plain to investigate hydro-geochemical processes controlling groundwater iodine. High iodine groundwater (> 100μg/L) was characterized by Na-Cl type, with high TDS values (827-2,400mg/L) and high Cl (110-705mg/L) and Br (416-1,180μg/L) concentrations, which may be related to marine influence. Borehole BT and HH had pore water I concentration ranges of 1.4-132μg/L and 3.6-830μg/L, with high level that occurred near to coastline and corresponded to ancient transgression events. The results of sequential extraction of borehole sediments indicate that the fractions of sediment inorganic iodine mainly consisted of exchangeable, carbonate, and Fe-oxides associated fractions. Fe-oxides associated iodine was the main occurrence state in borehole BT far from the coastline, but high exchangeable iodine fractions (up to 92% of total extracted iodine) were observed in a high salinity borehole HH located near Bohai Bay, corresponding to the occurrence of high iodine pore water and groundwater. The analysis of iodine species indicates that iodide with strong migration ability dominated high iodine groundwater, pore water, and exchangeable sediment iodine, reflecting the occurrence of adsorption/desorption processes of iodine in groundwater system. High iodine groundwater and pore water exhibited iodine enrichment relative to Cl and Br, which suggests that iodine adsorbed on sediment desorbed under suitable pH and high solution ionic strength and subsequently released to pore water and aquifers. Inverse geochemical modeling stressed that ion exchange plays an important role in iodine enrichment of groundwater system.
Read full abstract