A novel β-1,3-glucanase gene, designated Ccglu17A, was cloned from the biological control fungus Chaetomium cupreum Ame. Its 1626-bp open reading frame encoded 541 amino acids. The corresponding amino acid sequence showed highest identity (67%) with a glycoside hydrolase family 17 β-1,3-glucanase from Chaetomium globosum. The recombinant protein Ccglu17A was successfully expressed in Pichia pastoris, and the enzyme was purified to homogeneity with 10.1-fold purification and 47.8% recovery yield. The protein's molecular mass was approximately 65kDa, and its maximum activity appeared at pH 5.0 and temperature 45°C. Heavy metal ions Fe2+, Mn2+, Cu2+, Co2+, Ag+, and Hg2+ had inhibitory effects on Ccglu17A, but Ba2+ promoted the enzyme's activity. Ccglu17A exhibited high substrate specificity, almost exclusively catalyzing β-1,3-glycosidic bond cleavage in various polysaccharoses to liberate glucose. The enzyme had a Km of 2.84mg/mL and Vmax of 10.7μmolglucose/min/mg protein for laminarin degradation under optimal conditions. Ccglu17A was an exoglucanase with transglycosylation activity based on its hydrolytic properties. It showed potential antifungal activity with a degradative effect on cell walls and inhibitory action against the germination of pathogenic fungus. In conclusion, Ccglu17A is the first functional exo-1,3-β-glucanase to be identified from C. cupreum and has potential applicability in industry and agriculture.