The use of transgenic farm animals as bioreactors to address the growing demand for biopharmaceuticals, both in terms of increased quantity and greater number, represents a key development in the advancement of medical science. However, the potential for detrimental side effects as a result of uncontrolled constitutive expression of foreign genes in transgenic animals is a well-recognised limitation of such systems. Previously, using a tetracycline-inducible expression system, we demonstrated the induction of expression of a transgene encoding green fluorescent protein (GFP) in transgenic chickens by feeding with doxycycline, a tetracycline derivative; expression of GFP reverted to pre-induction levels when the inducer was removed from the diet (Kwon et al. 2011 Biochem. Biophys. Res. Commun. 410, 890–894). As a proof of principle study, however, quantitative assessment of expression was not possible, as only 1 G0 and 1 G1 transgenic chicken was obtained. In the current study, with 7 G2 transgenic chickens obtained from 1 G1 hen, we confirmed stable genomic integration of a single copy number of the transgene by Southern blot analysis. As we have observed in G1 transgenic chicken previously, all of the G2 transgenic chickens emitted a green fluorescence upon doxycycline feeding (50 mg kg–1 of formula feed). Fluorescence became detectable 4 days after starting doxycycline feeding, and maximum GFP expression was detected after 2 weeks. Removal of doxycycline from the diet after 14 days of induction feeding resulted in the return of external fluorescence to pre-induction levels after 39 days. Quantitative analysis of gene induction was done using protein and mRNA extracted from primary cultured cells derived from 6-day transgenic chicken embryos. The eggs were obtained by mating a nontransgenic wild-type hen with 1 of G2 transgenic roosters. Protein levels of GFP were analysed by immunoblot and quantified using a densitometer. In the absence of doxycycline, the amount of GFP per 1 µg of total protein was 0.2 ng. However, when the cells were treated with doxycycline for 6 days, the amount of GFP increased to 3.1 ng per 1 µg of total protein, which was 16-fold higher than that of the cells pre-treated with doxycycline. Switching to doxycycline-free medium after doxycycline induction resulted in significant abrogation of GFP expression in 6 days; the amount of GFP reduced from 3.1 to 0.5 ng, a 6.2-fold reduction. Transcription of the GFP gene was also assessed by Northern blot. The amount of GFP mRNA measured by band density increased as much as 20-fold (3.9/0.2) with 6 days of doxycycline induction and declined to 1/8 (3.9/0.5) when doxycycline was removed from the cell culture media for 6 days. The use of an inducible expression system that can be regulated by dietary supplementation could help mitigate the physiological disruption that can occur in transgenic animals as a result of uncontrolled constitutive expression of a transgene.