As the global population continues to grow, the use of pesticides to increase food production is projected to escalate. Pesticides are critical in plant protection, offering a powerful defense against fungal diseases such as apple scab, leaf spot, sclerotinia rot, damping off, sheath blight, and root rot, which threaten crops like cereals, corn, cotton, soybean, sugarcane, tuberous vegetables, and ornamentals. Succinate Dehydrogenase Inhibitor (SDHI) fungicides represent a novel class essential for controlling fungal pathogens and bolstering food security. However, the impact of SDHIs on non-target organisms, including freshwater and terrestrial invertebrates, crustaceans, and oligochaetes, remains insufficiently understood. Empirical studies indicate that SDHIs can induce mortality, mitochondrial dysfunction, oxidative stress, and developmental delays in non-target organims. Additionally, the environmental persistence of these compounds raises concerns about their potential for ecological disruption. The effects of SDHIs on pollinating species and the possible transgenerational transmission of harmful effects warrant further investigation. Comprehensive transcriptomic analyses are necessary to elucidate the molecular disturbances and adverse outcome pathways triggered by SDHIs. Furthermore, there are emerging concerns about the endocrine-disrupting potential of SDHIs in aquatic organisms. For the first time, this review aims to synthesize existing knowledge on the ecotoxicological impacts of SDHIs on non-target organisms and identify critical research directions to address the ecological challenges posed by their use.
Read full abstract