Lung cancer is the leading cause of cancer-associated death and the first most diagnosed cancer in the world. More than 2 million new cases are diagnosed and 1.6 million people die due to lung cancer every year. It is urgent to explore novel drugs and approaches for lung cancer treatment. Cinobufotalin is a TCM isolated from dried toad venom, which has been used to treat lung cancer. However, the precise mechanism remains unclear. This study was to investigate the mechanism of cinobufotalin treated in lung cancer. Cell growth was identified by Cell Counting Kit-8 (CCK-8) assay. Besides, ferroptosis of lung cancer cells was determined by intracellular iron content, lactate dehydrogenase (LDH) release and mitochondrial membrane potential. Moreover, RNA levels and proteins were detected by quantitative reverse transcription-PCR (qRT-PCR) and Western blot (WB), respectively. In addition, the regulatory effect of hsa-miR-367-3p on TFRC was confirmed by luciferase reporter assay. This study indicated that cinobufotalin suppressed lung cancer cell growth through resibufogenin. Besides, cinobufotalin induced ferroptosis in lung cancer cells through resibufogenin. Moreover, cinobufotalin increased lncRNA LINC00597 level, whereas it downregulated hsa-miR-367-3p expression in lung cancer cells via resibufogenin. In addition, ferroptosis inducer transferrin receptor (TFRC) was the target of hsa-miR-367-3p, and lncRNA LINC00597 upregulates TFRC expression through sponging hsa-miR-367-3p in lung cancer cells. In summary, this study indicated that cinobufotalin induced ferroptosis to suppress lung cancer cell growth by lncRNA LINC00597/hsa-miR-367-3p/TFRC pathway via resibufogenin might provide novel therapeutic targets for lung cancer therapy.
Read full abstract