The aim of this work is to investigate the sound absorption properties of open-porous polyamide 12 (PA12) structures produced using Selective Laser Sintering (SLS) technology. The examined 3D-printed samples, fabricated with hexagonal prism lattice structures, featured varying thicknesses, cell sizes, and orientations. Additionally, some samples were produced with an outer shell to evaluate its impact on sound absorption. Experiments were conducted using the transfer function method with an acoustic impedance tube in the frequency range of 250 Hz and 6400 Hz. The results showed that the studied geometric factors significantly affected the sound absorption of the PA12 samples. In some cases, the hexagonal prism lattice structures demonstrated relatively high sound absorption properties. Thanks to their properties such as lower weight, recyclability, and resistance to moisture and chemicals, these structures become competitive with commonly used sound-insulating materials, making them promising candidates for sound absorption. Furthermore, numerical simulations using Ansys software confirmed that the sound absorption properties of the open-porous material structures generally increased with higher specific airflow resistance. The findings highlight the advantages of 3D printing technology in producing complex, highly customizable porous structures for noise reduction applications.
Read full abstract