Differentiated, human submucosal-gland carcinoma, Calu-3 cell monolayers were used as in vitro model for the airway epithelium. Internalised phage were selected from a recombinant pComb8 phage library by repetitive cycles of bio-panning on Calu-3 monolayers, protease K degradation, cell-lysis and amplification. After four selection rounds, sequence analysis of 15 enriched phage colonies revealed two clones of 73 and 27% abundancy, named IB1 and IB2, respectively. The IB2 sequence was eliminated due to a frame shift. IB1-phage internalisation at 4°C was significantly lower (P<0.05)than at 37°C, suggesting involvement of a receptor-mediated endocytosis pathway. The IB1 peptide was synthesised, biotinylated and complexed to streptavidin. IB1/streptavidin-complexes co-administrated with PEI/DNA-polyplexes, enhanced polyplex transfection efficiency, dose dependently, by 6- and 4-fold in Calu-3 cells. IB1/Alexa488-streptavidin complexes were used for confocal laser-scanning microscopy (CLSM) visualisation and showed basolateral localisation in membrane associated and internalising vesicles. This study demonstrates the potential of phage display technology for identification of internalising peptide–epitopes that can enhance gene delivery efficiency in differentiated airway epithelial cells.
Read full abstract