Transepithelial taurine fluxes determined in short-circuited monolayer cultures of flounder renal proximal cells in Ussing chambers revealed net taurine secretion. Both unidirectional secretory and reabsorptive taurine fluxes exhibited saturation kinetics contributed by two distinct saturable transepithelial taurine transport systems operating at different taurine concentration ranges. The taurine secretory system operating below 0. 5 mM had lower affinity but higher capacity than the reabsorptive system, whereas the one operating at high concentrations (0.5-3.0 mM) had higher affinity but the same capacity as the corresponding reabsorptive system. Exposure (2 h) of the cultures to hyposmotic medium in the presence of taurine increased taurine secretory flux twofold with no effect on the reabsorptive flux. The hyposmolality-induced increase in taurine secretion was associated with a decreased peritubular taurine efflux and a concurrent increased luminal taurine efflux; the latter occurred via a pathway that was not affected by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid but inhibited by probenecid. The culture response in hyposmotic medium mimics the in vivo response of the intact marine fish kidney to dilution.
Read full abstract