ObjectiveEndometriosis (EMs) is a chronic inflammatory disease characterized by the presence of endometrial tissue in the non-uterine cavity, resulting in dysmenorrhea, pelvic pain, and infertility. Epidemiologic data have suggested the correlation between EMs and recurrent pregnancy loss (RPL), but the pathological mechanism is unclear. This study aims to investigate the potential biomarkers and immune infiltration in EMs and RPL, providing a basis for early detection and treatment of the two diseases.MethodsTwo RPL and six EMs transcriptomic datasets from the Gene Expression Omnibus (GEO) database were used for differential analysis via limma package, followed by weighted gene co-expression network analysis (WGCNA) for key modules screening. Protein-protein interaction (PPI) network and two machine learning algorithms were applied to identify the common core genes in both diseases. The diagnostic capabilities of the core genes were assessed by receiver operating characteristic (ROC) curves. Moreover, immune cell infiltration was estimated using CIBERSORTx, and the Cancer Genome Atlas (TCGA) database was employed to elucidate the role of key genes in endometrial carcinoma (EC).Results26 common differentially expressed genes (DEGs) were screened in both diseases, three of which were identified as common core genes (MAN2A1, PAPSS1, RIBC2) through the combination of WGCNA, PPI network, and machine learning-based feature selection. The area under the curve (AUC) values generated by the ROC indicates excellent diagnostic powers in both EMs and RPL. The key genes were found to be significantly associated with the infiltration of several immune cells. Interestingly, MAN2A1 and RIBC2 may play a predominant role in the development and prognostic stratification of EC.ConclusionWe identified three key genes linking EMs and RPL, emphasizing the heterogeneity of immune infiltration in the occurrence of both diseases. These findings may provide new mechanistic insights or therapeutic targets for further research of EMs and RPL.
Read full abstract