BackgroundEncystation is one of the two processes comprising the life cycle of Giardia lamblia, a protozoan pathogen with tetraploid genome. Giardia lamblia Myb2 (GlMyb2) is a distinct encystation-induced transcription factor whose binding sites are found in the promoter regions of many encystation-induced genes, including its own.MethodsTwo sequential CRISPR/Cas9 experiments were performed to remove four glmyb2 alleles. The expression level of G. lamblia cyst wall protein 1 (GlCWP1), a well-known target gene of GlMyb2, was measured via western blotting and immunofluorescence assays. Chromatin immunoprecipitation experiments using anti-GlMyb2 antibodies were performed on the encysting G. lamblia cells. Quantitative real-time PCR was performed to confirm an expression of candidate GlMyb2-regulated genes by comparing the transcript level for each target candidate in wild-type and knockout mutant Giardia. The promoter region of glcwp1 was analyzed via deletion and point mutagenesis of the putative GlMyb2 binding sites in luciferase reporters.ResultsCharacterization of the null glmyb2 mutant indicated loss of functions related to encystation, i.e. cyst formation, and expression of GlCWP1. The addition of the wild-type glmyb2 gene to the null mutant restored the defects in encystation. Chromatin immunoprecipitation experiments revealed dozens of target genes. Nineteen genes were confirmed as GlMyb2 regulons, which include the glmyb2 gene, six for cyst wall proteins, five for signal transduction, two for transporter, two for metabolic enzymes, and three with unknown functions. Detailed analysis on the promoter region of glcwp1 defined three GlMyb2 binding sites important in its encystation-induced expression.ConclusionsOur data confirm that GlMyb2 acts as a transcription activator especially during encystation by comparing the glmyb2 knockout mutant with the wild type. Further investigation using glmyb2 null mutant will provide knowledge regarding transcriptional apparatus required for the encystation process of G. lamblia.Graphical
Read full abstract