The apurinic/apyrimidinic site (AP site) is a highly mutagenic and cytotoxic DNA lesion. Normally, AP sites are removed from DNA by base excision repair (BER). Methoxyamine (MOX), a BER inhibitor currently under clinical trials as a tumor sensitizer, forms adducts with AP sites (AP-MOX) resistant to the key BER enzyme, AP endonuclease. As AP-MOX remains unrepaired, translesion DNA synthesis is expected to be the main mechanism of cellular response to this lesion. However, the mutagenic potential of AP-MOX is still unclear. Here, we compare the blocking and mutagenic properties of AP-MOX and the natural AP site for major eukaryotic DNA polymerases involved in translesion synthesis: DNA polymerases η, ι, ζ, Rev1, and primase–polymerase PrimPol. The miscoding properties of both abasic lesions remained mostly the same for each studied enzyme. In contrast, the blocking properties of AP-MOX compared to the AP site were DNA polymerase specific. Pol η and PrimPol bypassed both lesions with the same efficiency. The bypass of AP-MOX by Pol ι was 15-fold lower than that of the AP site. On the contrary, Rev1 bypassed AP-MOX 5-fold better than the AP site. Together, our data suggest that Rev1 is best suited to support synthesis across AP-MOX in human cells.
Read full abstract